
 

  Abstract

 

In recent years, Graphplan style reachability analysis and
mutual exclusion reasoning have been used in many high
performance planning systems. While numerous refinements
and extensions have been developed, the basic plan graph
structure and reasoning mechanisms used in these systems
are tied to the very simple STRIPS model of action. 

In 1999, Smith and Weld generalized the Graphplan
methods for reachability and mutex reasoning to allow
actions to have differing durations. However, the
representation of actions still has some severe limitations
that prevent the use of these techniques for many real-world
planning systems.

In this paper, we 1) separate the logic of reachability from
the particular representation and inference methods used in
Graphplan, and 2) extend the notions of reachability and
mutual exclusion to more general notions of time and action.
As it turns out, the general rules for mutual exclusion
reasoning take on a remarkably clean and simple form.
However, practical instantiations of them turn out to be
messy, and require that we make representation and
reasoning choices.

 

Introduction

 

In 1995, Blum and Furst introduced a method for reachabil-
ity analysis in planning [2, 3]. The method involves incre-
mental construction of a plan graph to provide information
about which propositions and actions are possible at each
time step. Since then, plan graph analysis has been a key part
of several high performance planning systems such as IPP
[18], STAN [19], and Blackbox [16]. More recently, reach-
ability analysis has been used for another purpose – to help
compute more accurate heuristic distance estimates for
guiding state-space search [4, 11, 24, 22] and guiding search
in partial-order planners [23].

Reachability analysis and mutual exclusion reasoning
have also been the subject of both efficiency improvements
[19, 6], and extensions to deal with things like limited forms
of uncertainty [26, 28], and resources [17]. Unfortunately,
the basic plan graph structure and reasoning mechanisms are
limited to the very simple STRIPS model of action. In
STRIPS, one cannot talk about time – actions are considered
to be instantaneous, or at least of unit duration, precondi-
tions must hold at the beginning actions, and effects are true
in the subsequent state. Many real world planning problems
require a much richer notion of time and action; actions can

have differing durations, preconditions may need to hold
over some or all of the actions, effects may take place at dif-
fering times, and exogenous events or conditions may occur.

In 1999, Smith and Weld [27] generalized the Graphplan
methods for reachability and mutex reasoning to allow ac-
tions to have differing durations. However, the representa-
tion of actions used by Smith and Weld still made a number
of simplifying assumptions:

1. All effects take place at the end of an action.

2. Preconditions that are unaffected by an action hold
throughout the duration of the action.

3. Preconditions that are affected by an action are unde-
fined throughout the duration of the action.

4. There are no exogenous events.

Unfortunately, these restrictions are not reasonable for many
real-world domains [14, 25]. Many actions have resource
consumption effects that occur at the beginning of the ac-
tion. Others have effects that are transient. In addition, some
action preconditions need only hold at the beginning of an
action, or for a limited period. As an example that illustrates
all of these, turning a spacecraft involves firing thrusters for
periods at the beginning and end of the turn. As a result,
there are transient needs for various resources (valves, con-
trollers), transient effects like vibration and heat that occur
near the beginning and end, and outright resource consump-
tion (fuel) that occurs near the beginning, and near the end.

Finally, exogenous events are crucial in many domains.
For example, in planning astronomical observations, celes-
tial objects are only above the horizon during certain time
windows, and they must not be occluded by other bright ob-
jects.

While Smith and Weld’s Temporal Graphplan (TGP)
planner performs extremely well
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, the representation cannot
be easily extended to remove the above restrictions. In par-
ticular, when exogenous events and/or transient effects are
permitted, reachability and mutual exclusion relationships
hold over intervals of time. For example, the action of ob-
serving a particular celestial object is only reachable during
the intervals when the object is visible. A second problem

 

1.  Do [8] and Haslum [10] have reported that TGP continues to
outperform more recent domain-independent temporal planners.
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with TGP is that the mutex rules are complex, and it has been
difficult to verify that they are sound.

In this paper we extend the notions of reachability and
mutual exclusion reasoning to deal with the deficiencies in
TGP, namely: 1) actions with general conditions and effects,
and 2) exogenous conditions. Note that our objective here is
not to develop a planning system that does this reasoning,
but rather to lay down a formal set of rules for doing this rea-
soning. Given such a set of rules, there are choices concern-
ing how much reachability reasoning one actually wants to
do, which in turn leads to different possibilities data struc-
tures, implementations, and search strategies.

In the next section we introduce notation for time and ac-
tions. Using this notation, we then develop the laws for sim-
ple reachability without mutual exclusion. We then develop
a very general but simple set of laws for mutual exclusion
reasoning. Finally, we discuss practical issues of implement-
ing these laws. In particular, we discuss some possible re-
strictions that one might want to impose on mutex reasoning
and discuss how these laws can be implemented using a con-
straint network and generalized arc-consistency techniques.

 

The Basics

 

Propositions, Time and Intervals

 

To model many real world planning domains, we need to
talk about propositions (fluents) holding at particular points
in time, and over intervals of time. We will use the notation

 to indicate that fluent 

 

p

 

 holds at time 

 

t

 

. We will use the
notation  to indicate that 

 

p

 

 holds over the interval 

 

i

 

. Thus:

We use the standard notation , , ,
 to refer to closed, open, and partially open intervals

respectively, and use  and  to refer to the left and right
endpoints of an interval. For our purposes, we do not need a
full set of interval relations, such as those defined by Allen
[1]. However, we do need the simple relation 

 

meet

 

. Two in-
tervals 

 

meet

 

 if the right endpoint of the first is equal to the
left endpoint of the second, and the common endpoint is
contained in at least one of the two intervals (they can’t be
both open):
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Finally, we use  to refer to the concatenation of two in-
tervals that meet.

 

Actions

 

In many real world domains, actions take time. In order for
an action to be successful, certain conditions may need to
hold over part or all of the action. Furthermore, different ef-
fects of the action may not all occur at the same time. In fact
some of these effects may be 

 

transient – 

 

that is, they are only
temporarily true during the action. For example, an action

may use a resource (such as a piece of equipment) but re-
lease it at the end. In this case the resource becomes unavail-
able during the action, but becomes available again at the
end of the action. To capture all of this, we model actions as
having a condition and an effect, both of which are a con-
junction of literals.
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 Thus, an action is represented as:

 

a;t

 

cond: 

eff:

 

Where we require that:

1. the conjunction of the condition and effect is logically
consistent

2. each effect must start at or after time 

 

t

 

, that is:

3. each of the intervals ,  is relative to the start time

 

t

 

, that is , where the interval 

 

∆

 

 is not a func-
tion of 

 

t

 

.

A simple STRIPS action with preconditions  and
effects  would be modelled as:

 

a;t cond: 

eff:

 

As a more complex example, consider an action that requires
that 

 

p

 

 hold throughout the action, and requires a resource 

 

r

 

for two time units before releasing 

 

r

 

 and producing its final
effect 

 

e

 

. This would be modelled as:

 

a;t

 

cond: 

eff:

 

So what exactly are the semantics of these more general
actions? In STRIPS, an action can only be performed if its
preconditions hold. In that case, the effects will hold at the
next time point or 

 

state

 

. However, this does not make sense
for our more general notion of action, because the condition
might specify that a proposition hold at some time after the
start of the action. In other words, there is nothing to prevent
us from initiating such an action even though part of the con-
dition is not valid. As a result, the semantics we ascribe to
actions is that if action 

 

a;t

 

 is performed at time 

 

t

 

 and all of the
conditions hold over the designated time intervals, then the
effects will hold over the designated time intervals. If the
conditions do not hold, then the outcome of the action is un-
known. 

Note that there is a subtle difference between the effects:
, , and . The first specifies

that 

 

e

 

 holds over the designated interval, and ceases to hold
after that. The second says that 

 

e

 

 holds over the specified in-
terval but may persist after that if nothing else interferes. The

 

2. We permit the endpoint to be in both intervals. Technically this
would be considered overlap by Allen [1].
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3. Disjunctions in the condition can be handled by breaking the
action into simpler actions with only conjunctive conditions. We
could also allow any number of condition/effect pairs, as is done
with conditional effects in the PDDL language. However, for our
purposes it is more convenient to have different names for each
condition/effect pair. As a result, we will suppose that an action
with multiple condition/action pairs is broken up into separate
actions having disjoint conditions.
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last specifies 

 

e

 

 at 

 

t

 

 and 

 

t’

 

 but leaves the status of 

 

e

 

 at interme-
diate times subject to persistence or interference by other ac-
tions. All three of these turn out to be useful, but the first is
generally the most common.

For convenience we will use 

 

Cond(

 

a;t

 

)

 

 and 

 

Eff(

 

a;t

 

)

 

 to refer
to the condition and effect for action 

 

a;t

 

 respectively. It is not
particularly important how we define the duration of an ac-
tion, but in keeping with the usual intuitions, we will define
it as being the difference between the end of the last effect,
and the start of the action. Thus:

 

Exogenous Conditions
In order to model more realistic planning problems, we need
to model exogenous conditions. By an exogenous condition,
we mean any condition dictated by actions or events not un-
der the planner’s control. For a STRIPS planning problem,
the initial conditions are the only type of exogenous condi-
tions permitted. More generally, exogenous conditions can
include such things as the intervals during which certain ce-
lestial objects are visible, or the times at which resources be-
come available. We can consider exogenous conditions as
being the effects of unconditional exogenous actions. For
convenience, we will lump all exogenous conditions togeth-
er, and consider them as being the effects of a single uncon-
ditional action, X:

X;0 cond: 

eff:

where for initial conditions, the interval would be the time
point 0. Thus, for a telescope observation problem, we might
have something like:

X;0 cond: 

eff:

For purposes of this paper, we have chosen to consider only
unconditional exogenous events. More generally, we might
want to consider conditional exogenous events – i.e., events
that occur only if the specified conditions are met. As it turns
out, this extension requires a few additional axioms, but is
otherwise not particularly difficult. We will elaborate on this
later.

Simple Reachability
We first consider a very simple notion of reachability; we re-
gard a proposition as being reachable at time t if there is
some action that can achieve it at time t, and each of the con-
ditions for the action is reachable at/over the specified time
or interval. This is a very optimistic notion of reachability
because even though two conditions for an action might be
possible, they might be mutually exclusive, and we are not
yet considering this interaction. To formalize reachability,

we will use two modal operators, , and . ,
means that p;t is logically possible – that is, p;t is consistent
with the exogenous conditions.  means that p;t is opti-
mistically achievable or reachable – that is, there is some
plan that could (optimistically) achieve p;t. According to
these definitions, if p;t is reachable, it is possible. However
the converse is not true – p;t can be logically possible, but not
reachable, because the set of actions is not sufficiently rich
to achieve p;t. 

For convenience, we will allow and to apply to in-
tervals as well as single time points:

In general, modal logics tend to have nasty computational
properties, but the logic we will develop here is particularly
simple – we do not require any nesting of these modal oper-
ators, and we will not be allowing any quantification inside
of a modal operator.

Exogenous Conditions
The first set of axioms we need are the exogenous condi-
tions. Thus:

(1)

Of course, the exogenous conditions are also both possible
and reachable:

(2)

(3)

Likewise, the negation of any exogenous condition cannot
be either possible or reachable:

(4)

(5)

Finally, we need to be able to apply the closed world as-
sumption to the exogenous conditions, inferring that any-
thing that is not explicitly prohibited by the initial conditions
is possible: 

(6)

Persistence
Next, we need a frame axiom for reachability – that is, an ax-
iom that allows us to infer that if a proposition is reachable
at a given time then it is reachable later on, just by allowing
it to persist. However, we need to make sure that the propo-
sition isn’t forced to become false by an exogenous condi-
tion. To do this, we require that the proposition also be
possible. A first version of this axiom is:

(7)

Here, the intervals i and j can be either open or closed – all
we require is that they meet. Most commonly, i will be a sin-
gle time point t, and j an open interval (t,t’), where t’ is either

, or the next time point at which the proposition p becomes
false because of exogenous conditions.

Unfortunately, this axiom is a bit too optimistic – it al-
lows us to persist transient effects of an action indefinitely

D a t;( ) j
+

t–
j Eff a t;( ) e j;⇒:{ }

max≡

xc1 i1; … xcn in;∧ ∧

Telescope-parked 0;

Sunset 0023;∧

Visible C842( ) 0217 0330,[ ];∧

…∧

p t;( )◊ p t;( )∆ p t;( )◊

p t;( )∆

◊ ∆

p i;( )◊ t i∈( ) p t;( )◊∀≡

p i;( )∆ t i∈( ) p t;( )∆∀≡

Eff X ;0( ) p t;|–( ) p t;|–

p i; p i;( )◊⇒

p i; p i;( )∆⇒

p i; p¬ i;( )◊¬⇒

p i; p¬ i;( )∆¬⇒

Eff X 0;( ) p t;¬|–/( ) p t;( )◊|–

p i;( )∆ meets i j,( ) p j;( )◊∧ ∧ p i j||;( )∆⇒

∞
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into the future. Normally this is ok, but if an exogenous con-
dition blocks a condition for that action at some time in the
future, then the transient effect should not persist indefinite-
ly. For example, suppose that we have a single action a;t hav-
ing condition p;t, and requiring a resource r for two time units
before releasing r and producing its final effect e. This would
be modelled as:

a;t cond: 

eff:

Now suppose that the conditions p and r are initially true,
but p becomes false at time 3. As a result, a is only reachable
up until time 3. The effect e is first reachable at time 2, but
can persist indefinitely. However, ¬r can only occur during
the action, and should therefore only be reachable in the in-
terval (0,5). However, Axiom (7) would allow us to persist
the reachability of  indefinitely into the future.

The way we fix this problem is to specialize axiom (7) to
only allow action effects to persist if they are not later over-
ridden by the action. Formally, we define p;i to be a persis-
tent effect for an action if there is no other effect ¬p;j such
that j ends after i:4

Using this definition, we can restrict axiom (7) by requiring
that p;t be a persistent effect:

(8)

This allows us to persist the reachability of persistent effects,
but not transient ones.

Actions
Finally, we need axioms that govern when actions are reach-
able, and what their effects will be. An action is reachable if
its conditions are reachable and the effects are not prevented:

(9)

Conversely, if an action is reachable, both its conditions and
its effects must be reachable:

(10)

Conjunctive Optimism
Although Axiom (9) is technically correct, it is difficult to
satisfy. The trouble is the premise . Typically, the
condition for an action will be a conjunction of propositions,
so we need to be able to prove that this conjunction is reach-
able in order to be able to use the axiom. Unfortunately, we
cannot usually do this, because our axioms only allow us to

infer that individual effects are possible, (or at best, conjunc-
tions of effects resulting from the same action). Deciding
whether a conjunction of propositions is reachable is a plan-
ning problem, so there is little hope that we can do it effi-
ciently. Instead, we will be extremely optimistic, and
suppose that if the individual propositions are reachable,
then the conjunction is reachable:

(11)

In the next section we will revise this axiom to require that
the propositions are not mutually exclusive.

An Example
To see how the axioms for simple reachability work, we re-
turn to our example with a single action a;t having condition
p;t, and requiring a resource r for two time units before re-
leasing r and producing its final effect e:

a;t cond: 

eff:

We suppose that the conditions p and r are initially true, but
p becomes false at time 3. We therefore have the exogenous
conditions:

X;0 cond: 

eff:

Using the axioms developed above, we can now derive
reachability for the propositions p, r, ¬r, e, and the action a:

1. , , X;0, (1)

2. , 1, (3)

3. , 1, (6-CWA)

4. , 2, 3, (8-Persist.)

5. 4, (9)

6. , 5, (10)

7. 1, (6-CWA)

8. 6, 7, (8-Persist.)

In this proof the numbers at right refer to the previous lines
of the proof, and the axioms that justify the step. A graphical
depiction of the final reachability intervals is shown in Fig-
ure 1.

Thus, we can see that because the action a is only possible
up until time 3,  only persists up until time 5, but e can

4. Since the effects of an action must be consistent, the intervals i
and j will actually be disjoint.

p t; r t;∧
r t t 2+,( );¬ r t 2+; e t 2+;∧ ∧

r¬

PersistEff a t;( ) p i; Eff a t;( )∈ j∃¬ j
+

i
+>

p j; Eff a t;( )∈ p¬ j; Eff a t;( )∈∨ 
 

∧:
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a t; Cond a t;( ) Eff a t;( )∧⇒
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Cond a t;( )∆

Figure 1:  Reachability intervals for a simple example.

p1 i1;( )∆ … pn in;( )∆∧ ∧

p1 i1; … pn in;∧ ∧( )∆⇒

p t; r t;∧
r t t 2+,( );¬ r t 2+; e t 2+;∧ ∧

p 0; r 0; p 3;¬∧ ∧

p 0; r 0; p 3;¬

p 0;( )∆ r 0;( )∆

p 0 3,( );( )◊ r 0 ∞,( );( )◊

p 0 3,[  );( )∆ r 0 ∞,[  );( )∆

a 0 3,[  );( )∆

e 2 5,[  );∆ r¬ 0 5,( );( )∆

e 5 ∞,[  );( )◊

e 2 ∞,[  );( )∆

[

0 1 2 3 4 5 ∞

)

[ )

[ )

[ )

( )

p
a

r
e

¬r

r¬



November 18, 2001 5

persist indefinitely. Of course, if there were an exogenous ef-
fect that forced e to be false at some time in the future, then
the persistence of e would also be curtailed by axiom (3). If
p later became true again, we would be able to apply action
a again, so the action a, and propositions e and ¬r could be-
come reachable during additional intervals

The style of reasoning that we have done here closely
mimics what goes on in Graphplan – we started at time 0,
and worked forward in time, adding new actions and propo-
sitions as they became reachable. However, we are not lim-
ited to a strict temporal progression – we can draw
conclusions in any order, as long as they are sanctioned by
the axioms.

Mutual Exclusion
Much of the power of Graphplan comes from the use of bi-
nary mutual exclusion reasoning, which rules out many
combinations of incompatible actions and propositions.
From the point of view of our logic, proving that two or more
actions or propositions are mutually exclusive amounts to
proving that the conjunction is not possible and therefore not
reachable. We will use an n-ary modal operator

to indicate that the propositions  are mutually
exclusive. We note that the arguments to M are commutative
and associative. As before we will extend the notation to
work on intervals:

Using mutual exclusion, we revise the conjunctive opti-
mism axiom (11) to be:

(12)

Our job then, is to write a set of axioms that allows us to infer
when propositions are mutually exclusive. This will restrict
what we can infer with axiom (12), and hence restrict our
ability to infer when actions are reachable using axiom (9).
As in Graphplan, our mutual exclusion laws will be incom-
plete – we are looking for a set of laws that are computation-
ally effective so that the reasoning can be done in
polynomial time. As a result, we will restrict our attention to
binary mutual exclusion, noting that if any set of proposi-
tions is mutually exclusive, then any superset is mutually ex-
clusive:

As in the work on Temporal Graphplan [27], the fact that
we are dealing with a much more general notion of time
means that actions and propositions can overlap in arbitrary
ways. As a result, it helps to define mutual exclusion be-
tween actions and propositions, as well as between pairs of
actions and pairs of propositions. In addition, because of ex-
ogenous events, and transient action effects, mutual exclu-

sion relationships can come and go repeatedly.5 As it turns
out, the general rules for mutual exclusion reasoning take on
a remarkably clean and simple form. However, practical in-
stantiations of them turn out to be more complex.

Logical mutex
If two propositions are logically inconsistent then it is clear-
ly impossible for them to be true at the same time. Formally:

(13)

where  and  can be either propositions p;t, or actions
a;t. This rule is the seed that allows us to infer a number of
simple logical mutex relationships. For example, if 
and  we get the obvious mutex rule:

which forms the basis for Graphplan mutual exclusion rea-
soning. Similarly, if , and , and a;t’ has a pre-
condition or effect ¬p;t, then the action and proposition are
mutex (since ):

Going a step further, if we have two actions with logically
inconsistent preconditions or effects this rule allows us to
conclude that the actions are mutex:

Although we will not illustrate it here, rule (13) also admits
the possibility of inferring additional logical mutex from do-
main axioms that might be available (e.g. an object cannot
be in two places at once). It can also be used to derive logical
mutex between actions that have more general resource con-
flicts.

All of these logical mutex relationships are the seeds that
serve to drive the remainder of the mutex reasoning. As we
will see below, they allow us to infer additional mutex rela-
tionships between actions and propositions, pairs of actions,
and ultimately pairs of propositions.

Implication Mutex
Our second mutex rule is also remarkably simple, but more
subtle. If two propositions  and  are mutex, and some
other proposition  implies , then  is mutex with .
Formally:

(14)

Again, the  can be either propositions or actions. Suppose
that  and  are mutex propositions, and  is an action
that has  as a precondition. Since the action implies its
preconditions, this rule allows us to infer that the action is
mutex with . Going one step further, if  is an action,
then this rule allows us to conclude that the actions  and

 are mutex. Thus, this single rule allows us to move from
proposition/proposition mutex to proposition/action mutex,
to action/action mutex.

M p1 t1; … pn tn;, ,( )

p1 t1; … pn tn;, ,

M p1 i1; … pn in;, ,( )

t 1 i 1∈ … t n i n∈, ,( )∀ M p1 t1; … pn tn;, ,( )⇒

p1 i1;( )∆ … pn in;( )∆∧ ∧ 
  M p1 i1; … pn in;, ,( )¬∧

p1 i1; … pn in;∧ ∧( )∆⇒

M s( ) s s ′⊂∧ M s ′( )⇒

5. In Graphplan and even TGP, once a mutex relationship disap-
pears, it cannot reappear at a later time.

ψ1 ψ2¬⇒( ) M ψ1 ψ2,( )⇒

ψ1 ψ2

ψ1 p t;≡
ψ2 p t;¬≡

M p t; p¬ t;,( )

ψ1 p t;≡ ψ2 a t ′;≡

a t ′; p t;¬⇒( )

a t ′; p t;¬⇒( ) M p t; a t ′;,( )⇒

a1 t1; p t;⇒( ) a2 t2; p t;¬⇒( )∧ M a1 t1; a2 t2;,( )⇒

ψ1 ψ2
ψ3 ψ1 ψ3 ψ1

M ψ1 ψ2,( ) ψ3 ψ1⇒( )∧ M ψ3 ψ2,( )⇒

ψi
ψ1 ψ2 ψ3

ψ1

ψ2 ψ2
ψ3

ψ2
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To see how this works, consider two simple STRIPS actions:
a, having precondition p and effect e, and b, having precon-
dition q and effect f. Suppose that both p and q are reachable
at time 1, but that they are mutex as depicted graphically in
Figure 2. We can therefore apply the above rule to conclude

that a;1 is mutex with q;1 and b;1 is mutex with p;1. Having
done this, we can apply the rule again to conclude that a;1 is
mutex with b;1 as shown in Figure 3.

While axiom (14) works fine for a discrete STRIPS mod-
el of time, more generally, we do not want to do the mutex
reasoning for each individual time point. Instead, we would
like to do it for large intervals of time. So suppose we start
out with two propositions/actions  and  being mutex
over the intervals  and , and . Then to find
the time interval over which  will be mutex with , we
need to gather up all the times  that imply  at some
point in . Formally:

(15)

To illustrate how this works, we extend our example to
continuous time, and imagine that p and q are produced by
mutually exclusive actions of different duration. In particu-
lar, suppose that p over [1,3) is mutually exclusive with q
over [2,3). Using (15) we could conclude that:

as illustrated in Figure 4.

Explanatory Mutex
Our final rule is somewhat subtle and tricky – it is, in effect,
the explanatory version of the previous rule. Basically, it

says that if all ways of proving ψ1 are mutex with ψ2 then ψ1
and ψ2 are mutex:

(16)

The tricky part is the phrase “all ways of proving”. For our
purposes, we are interested in the case where ψ1 is a propo-
sition p;t and ψ3 is a way of achieving p;t. We could achieve
p;t by performing an action a;t’ that has p;t as an effect, but we
could also potentially perform the action a at some earlier
time and allow p to persist. Thus, we need to account for all
of these possibilities. Furthermore, if p is achieved earlier
and allowed to persist, that “means of achieving” could be
mutex with ψ2 for one of two reasons: either a;t’ is mutex
with ψ2, or the persistence of p is mutex with ψ2.

To formalize this, we define the support of a proposition
as being the union of the direct support and the indirect sup-
port for the proposition: 

The direct support is simply the set of actions that can direct-
ly achieve the proposition:

The indirect support is a set of miniature plans for achieving
the proposition, each consisting of an action a;t’ that achieves
the proposition before t, and the persistence of the proposi-
tion until t. As with persistence axiom (8), we need to be
careful not to rely on the persistence of transient effects:

Using this concept of support, we can restate our more spe-
cific version of (16) as:

(17)

For the case of direct support, σ is just an action a;t, so we
can directly evaluate . However, for indirect effects,
σ is a conjunction of an action a;t and a persistence p;i. If ei-
ther of these is mutex with ψ, then the conjunction is mutex
with ψ. More generally:

As a result, we expand axiom (17) into the more useful form:

 6 (18)

To illustrate how this axiom works, we return to the sim-
ple example in Figure 3. From implication mutex we already

Figure 2:  A simple STRIPS example with p and q mutex at
time 1.

Figure 3:  Mutex derived by the implication rule

Figure 4:  Implication mutex for intervals

q;1 b;1 f;2

p;1 a;1 e;2

q;1 b;1 f;2

p;1 a;1 e;2

ϕ1 ϕ2
i1 i 2 ϕ3 t3; ϕ1 t1;⇒

ϕ3 ϕ2 i2;
t 3 ϕ1

i1

M ϕ1 i1; ϕ2 i2;,( ) i 3 t ϕ3 t; t 1 i 1∈( )∃ ϕ 1 t1;:⇒:
 
 
 

=∧

M ϕ i 3; ϕ2 i2;,( )⇒

M a 1 3,[  ); q 2 3,[  );,( )
M b 2 3,[  ); p 1 3,[  );,( )
M a 1 3,[  ); b 2 3,[  );,( )

q;[2,3) b;[2,3) f

p;[1,3) a;[1,3) e

ψ3 ψ3 ψ1⇒( ) M ψ3 ψ2,( )⇒ 
 ∀

 
 
 

M ψ1 ψ2,( )⇒

Supp p t;( ) DirSupp p t;( ) IndSupp p t;( )∪=

DirSupp p t;( ) a t ′; a t ′;( )∆ Eff a t ′;( ) p t;⇒( )∧:
 
 
 

=

IndSupp p t;( ) a t ′; p t″ t,(  ];∧ :




=

a t ′;( )∆ t″ t< PersistEff a t ′;( ) p t″;⇒( ) p t″ t,(  ];( )◊∧ ∧ ∧




σ Supp p t;( )∈∀ M σ ψ,( ): 
  M p t; ψ,( )⇒

M σ ψ,( )

M σ1 ψ,( ) M σ2 ψ,( )∨ M σ1 σ2∧ ψ,( )⇒

σ DirSupp p t;( )∈∀ M σ ψ,( ): 
 

α π∧( ) IndSupp p t;( )∈∀ M α ψ,( ) M π ψ,( )∨: 
 ∧

M p t; ψ,( )⇒
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know that a;1 and b;1 are mutex. Effect e;2 has only the direct
support a;1. As a result, we can use the above rule to con-
clude that b;1 is mutex with e;2. Similarly, we can conclude
that a;1 is mutex with f;2. Finally, using these facts we can
conclude that e;2 is mutex with f;2 as shown in Figure 5.

As with Implication Mutex, we would like to be able to
apply (17) and (18) to intervals rather than just single time
points. If we generalize the notion of support to intervals, we
can state the more general version as:

(19)

As we did with (17) we could expand out to the longer but
more useful form containing direct and indirect support.

Practical Matters

Limiting mutex reasoning
Although the above mutex theory is very general, it can pro-
duce huge numbers of mutex conclusions, many of which
would not be very useful. In order to make the reasoning
practical, we need to constrain the application of these axi-
oms so that only the most useful mutex relationships are de-
rived.

The first, and most obvious way of limiting the mutex
rules is to only apply them to propositions and actions that
are actually reachable. If something isn’t reachable at a giv-
en time, it is mutex with everything else, so there is no point
in trying to derive additional mutex relationships.

While this certainly helps, it is not enough. The trouble is
that our laws allow us to conclude mutual exclusion relation-
ships for propositions and actions at wildly different times.
For example, we might be able to conclude that p;2 is mutu-
ally exclusive with q;238. While this fact could conceivably
be useful, it is extremely unlikely. To understand why, and
what to do about it, we need to consider how mutex are used. 

Fundamentally, we use mutex to decide whether or not
the conditions for actions are reachable, and hence whether
the actions themselves are reachable (axioms (12) and (9)).
Thus, the mutex relations that ultimately matter are the prop-
osition/proposition mutex between conditions for an action.
With simple STRIPS actions, this means we are concerned
with propositions being mutex at exactly the same time. Un-
fortunately, with more general conditions we can’t do this –

an action may require p;t, and q;t+1. Thus, we’d need to know
whether  in order to decide whether the action
was reachable. However, we do not care about

. Suppose we define the separation for a pair
of conditions in an action as the distance between the inter-
vals over which the conditions are required to hold. For our
example above, the condition separation was 1. We then take
the maximum over all conditions for an action, and the max-
imum over all actions. This tells us the maximum range of
times that we ultimately care about for proposition/proposi-
tion mutex relationships. In the extreme case where all pre-
conditions of actions are required at the start of the action,
we only need to consider whether propositions are mutex at
the same time.

We can draw similar conclusions concerning action/ac-
tion and action/proposition mutex, although in the latter
case, the ranges are somewhat wider. This is because we are
considering actions that support propositions, which means
the actions start before their effects. Still, limiting the appli-
cation of the axioms to such time ranges drastically reduces
the number of mutex conclusions, but with the potential
price of missing a few useful mutex relationships. For tem-
poral planning, this tradeoff needs to be carefully investigat-
ed.

Constraint-based reachability reasoning
We now turn our attention to the issue of finding an effective
way to calculate reachability information. For this, we turn
to constraint reasoning, which is an effective foundation for
reasoning about temporal planning problems. The con-
straint-based reachability reasoning tracks variables that de-
scribe reachability, and enforces constraints that eliminate
times where actions or propositions are not reachable.

The approach is motivated by the interval representation
used for temporal reasoning in various planning systems. In
simple temporal network propagation [7], event time do-
mains are described as intervals, and the algorithm is used to
infer distance relations between events in plans.

The basic idea appears similar to temporal networks; for
each action and proposition, we have a variable representing
when it is reachable, and constraints that relate action and
proposition reachability. However, this reachability problem
does not map to a classical temporal constraint satisfaction
problem. This is because action reachability requires neces-
sary conditions to extend over periods of time, so there is no
notion of a satisfying assignment to those variables. We
therefore turn to a more general class of constraint reasoning
problems, where the variables are linked by elimination pro-
cedures [12], that specify when intervals can be eliminated
from the domains. The result is a network where reachability
can be determined effectively by constraint propagation, but
there is no notion of a solution to the network. Different con-
straint propagation methods, such as generalized arc consis-
tency, can be applied to propagate the procedural
constraints. A very simple propagation method is to apply
the set of elimination procedures to quiescence.

6. In practice, if ψ is mutex with p;t. then we do not need to check
actions that support p prior to t (since the persistence of p will be
mutex with ψ). Thus we only need to consider support for p at
times t after p is mutex with ψ. This involves moving the check for
persistence mutex back into the definition of independent support.

Figure 5:  Mutex derived by the implication rule

q;1 b;1 f;2

p;1 a;1 e;2

σ Supp p i1;( )∈∀ M σ ϕ i 2;,( ): 
  M p i1; ϕ i 2;,( )⇒

M p t; q t 1+;,( )

M p t; q t 5+;,( )
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Let T be the set of possible times, which may be continu-
ous and infinite. Typically, T will be a sub-interval of the in-
tegers or the real numbers. For each action, we define a
variable , and for each proposition, we define a variable .
The initial domain of each variable is T, and the intended se-
mantics are that the variables represent the times at which an
action or proposition is reachable.

The simplest reachability procedure enforces that if a flu-
ent is not possible, it is not reachable. This gives rise to the
following intervals being eliminated for each variable :

The action reachability axioms are relatively straightfor-
ward as well. Let a be an action, and let , be
the action conditions, where each  represents the interval
distance from the action time. Let  be the ac-
tion effects, represented with the corresponding relative in-
terval distances.

If a precondition is not reachable at some point within the
necessary interval, then the action is not reachable. For each
variable , with eliminated intervals:

we can eliminate from :

where .

If an effect is not possible, then the achieving action is not
reachable. It turns out that we can enforce this in the same
way as conditions, as the impossible intervals have already
been eliminated from reachability and no other intervals are
eliminated from reachability unless no actions can achieve
those. For each effect  and each interval  eliminat-
ed from , we can eliminate the interval

from , where .

Enforcing the persistence axiom is again more involved.
The basic rule states that an interval where p is not reachable
can be extended up to the point where an action can achieve
p or an exogenous event establishes p. To determine this
point, for a given interval, we define the set of subintervals
over which an action a can provide an effect p:

where the union is over all effects e of a and each interval
 defining the domain of  for times . Note that

the result is a finite set of intervals.

Let us assume an interval  has been eliminated from
. Let  be the earliest time after , where p is necessarily

true,  if there is no such time. Then we can eliminate

the interval that extends from y to the earliest time where an
action can achieve p. In other words, we can eliminate

from the domain of , where  are all actions that
can achieve .

Again, we need to extend this notion to allow the elimi-
nation of intervals that are not necessarily met by the given
unreachable interval, but are nonetheless unreachable, as the
reachable conditions in between do not persist. This is easy
to do in the interval reasoning framework; we can simply
eliminate each interval that is not in the union

as the persistent effects have already been taken into ac-
count. The elimination of the interval immediately following

 is a special case of this elimination rule.

To see how the application of elimination rules works, we
again look at the earlier example. It is given that the follow-
ing intervals have been eliminated:

Initially, the action condition reachability rules only allow us
to eliminate .

Applying the persistence rule to , we calculate
 and find that it is empty. This allows us to elimi-

nate . Applying the persistence rule to other elimi-
nated intervals allows us to eliminate:

Now that more intervals have been eliminated for p, the
application of the action condition reachability rules allows

 to be eliminated.

Finally, calculating  for , we get ,
which allows us to eliminate . Note that the result is
the same as applying the logical axioms to determine when
actions and propositions may be reachable.

The above formulation does not include mutual exclusion
reasoning. For mutex reasoning, the variables will corre-
spond to pairs of propositions/actions, and the domains will
be sets of two dimensional intervals. Using these only re-
quires extending the elimination procedure for action reach-
ability to also eliminate actions where two preconditions are
mutually exclusive. Although we understand the basic out-
line of the elimination procedures for mutex reasoning, we
have not yet worked through all the details.

a p
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Discussion

Exogenous events:
For purposes of this paper we assumed that exogenous
events or actions were not conditional in nature. As a result,
we lumped all of the exogenous effects together into a single
action with no conditions. It is not too difficult to extend our
theory to allow general exogenous events. Initially, we start
with the set X of all effects from unconditional exogenous
actions. In order for an exogenous event to take place, its
conditions must be satisfied. Thus, any exogenous event
whose conditions are satisfied in X will also take place, so its
effects must be added to X. We continue in this way until we
obtain the closure of all exogenous conditions. The remain-
ing exogenous actions may or may not occur. However, if
their conditions ever become true, they will definitely occur.
As a result, we need to treat them like domain axioms. In
other words, if a;t is a conditional exogenous event, we need
to add the axioms:

The problem therefore reduces to one of handling domain
axioms, which the theory already handles.

Conclusions
In this paper, we extended reachability and mutual exclusion
reasoning to apply to a much richer notion of action and
time. In doing this, we provided a formalization of these no-
tions that is independent of any particular planning frame-
work. Surprisingly, the rules for mutual exclusion reasoning
turn out to be simpler and more elegant than we expected,
particularly given the complexity of the rules for Temporal
Graphplan developed by Smith and Weld [27].

There are still a number of issues involved in making this
reasoning practical for temporal planning systems. Restrict-
ing the intervals over which the mutex rules apply seems
critical, but there are tradeoffs in the veracity of the resulting
mutex reasoning. Efficient interval representation and rea-
soning is also crucial. Superficially, the problem of deter-
mining reachability looks like it could be cast as a constraint
satisfaction problem. However, as we’ve discussed above,
the constraints are complex elimination procedures, and it is
not yet clear whether this approach will be computationally
effective.

We are continuing to work towards a CSP implementa-
tion within the Europa planning system [13, 14] and hope to
apply these techniques to real problems involving spacecraft
and rovers.
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